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Consortium on Green Design and Manufacturing

Consortium
on Green
Design

A
Manufacturing

A Multi-Disciplinary Research and Educational
Partnership Between Industry, Government,
and Academia.

Since 1993
http://cgdm.berkeley.edu

Multidisciplinary campus group integrating engineering
policy, public health, and business in green
engineering, management, and pollution prevention

Strategic areas:
» Civil infrastructure systems
» Electronics industry
» Servicizing products

9 faculty from Civil and Environmental Engineering,
Mechanical Engineering, Haas School of Business,
Energy and Resources Group, School of Public Health

10 current Ph.D. students
28 alumni
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Our Research Proposal to ARB

“Retail Climate Change Mitigation: Life-cycle Emission and Energy Efficiency Labels and
Standards”
» Partners: A. Horvath (UCB), E. Masanet (LBNL), S. Matthews and C. Hendrickson (Carnegie
Mellon University)
Assess opportunities for reducing California’s greenhouse gas (GHG) emissions through
the life-cycle of retail products and services that Californians consume that occur both
inside and outside of California.

» ~ 2/3 is due to product manufacture, but use and end of life stages are also
significant.
Create a life-cycle assessment (LCA) model for California.

Estimate the life-cycle GHG emissions of 20-30 key retail products consumed by
Californians.

Analyze the potential GHG emissions reductions achievable through the adoption of life-
cycle GHG emissions policies for labels and standards for retail products in California
over the next five years.



Exciting Times in California

AB 32 Global Warming Solutions Act [J Abig hitter 1

» by 2020, return GHG emissions to 1990
levels (and boost annual GSP by $60B
and create 17,000 jobs)

» By 2050, drop 80% below 1990 levels
Increasing consumption

Increasing population

Major market of U.S. carbon offset
demand

GOP, 3trn, 2002, selected countries
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GHG Reduction Potential

Where smog comes from
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View of the Economy: Input-Output Model
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INn vector/matrix notation:
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For more: www.eiolca.net



Role of the Consumer

e Up to 80% of the annual greenhouse gas (GHG)
"footprint” of the average U.S. consumer is attributable
to the purchase, use, and disposal of retail products
(Matthews, 1999, Carnegie Mellon U.)

e Consumer is guessing, at best
» SUV v. compact car
» Incandescent v. compact fluorescent

» but paper v. plastic cups? bags? ===
e Someone is picking “the right answer” for the consumer
» e.g., “‘green” electricity

The Economist, 5/31/07



Need Life-cycle Thinking!

e \We don’t always account for all environmental impacts

I Not much clean stuff a I Firing up
World total primary energy supply, fuel share, 2004, % Electricity production by source, % of total, 2004
Other Tide
Coal Renawablas oA L0004 B Coaland ail Huclear 0 Renewablas
25.2 31 . Wind - o -y and other
g (.04
o 2 40 60 &0 100
|
Germany
e Solar - I
_[:;:':;l__; 0,038 United States
Cenmark
Japan
. Britain
Gas Muclear Biomass Geothermal
2.0 £.5 — 10.4 0.41 France
Source: TEA Source: TEA

The Economist, 5/31/07 The Economist, 5/24/07




Life-cycle Environmental Assessment of
Products and Services (LEAPS)

(@
e www.consumerfootprint.org

e Chris Jones,
cmjones@berkeley.edu =
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Opportunities to Influence Private Consumers

I Changing outputs
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e Tesco (UK)
« Wal-Mart

« Home Depot

The Economist, 5/08/03
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Annual Expenditures for Typical US Household
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Courtesy of Chris Jones, BIE, UC Berkeley



Changing Consumption Patterns

I Phones, not beer 1
Househald spending in 0ECD countries™, 1990=100
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Summary of GHG Emissions for Typical U.S. Household
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LCA Framework

[ |
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A concept and methodology to evaluate the environmental effects of a product or
activity holistically, by analyzing the whole life cycle of a particular product, process, or
activity (U.S. EPA, 1993).



LCA Methodology — ISO 14040

LCA — Life-Cycle Assessment

(ISO 14040)

Goal and
scope
definition

Inventory

analysis

Impact
assessment

Interpretation

Direct applications:

* Product development

* Product/process improvement
* Strategic planning

* Policy making

* Marketing

* Other

Source: U.S. EPA, 1993




Structure of a Process-based LCA Model
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Economic Input-Output Analysis

- Developed by Wassily Leontief
 Nobel Prize in 1973

. “General interdependency” model: quantifies the
Interrelationships among sectors of an economic

system
- ldentifies the direct and indirect economic inputs

- Can be extended to environmental and energy
analysis



Economic I-O Analysis Visualization
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EIO-LCA Implementation

- Use the appr. 491 x 491 input-output matrix of the U.S.
economy
e 1992, 1997, soon 2002

- Augment with sector-level environmental impact
coefficient matrices (R) [effect/$ output from sector]

- Environmental impact calculation:
E=RX=R][l-DJF

- Avallable free at www.elolca.net



Economic Input-Output Analysis-based

LCA Model
Mode€l
| nput :
U _ Environmental
Demand Economic Input- M atrix
for Good—» Output Matrix (discharge or —
or Service (491 x 491 Sector) resource/
(F $ sector output)
Example of Model Output X=F+DX
Economic Energy Iron Ore N OX Dij = Xij/ Xj
Total (19929%) TJ kg kg
Motor Vehicles | x e X=[I-D]*F
Steel X =[I+D+D2+D3+...]F

E=R X=R[| - D]1F



Comparison of Electricity Generation Technologies
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Pacca, S., Horvath, A., “Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado River Basin.”
Env.Sci.Techn., 36(14), 2002, pp. 3194-3200



Approach and Methods (1)

1)

2)

3)

4)

Development of a California-specific LCA model for
evaluation of goods and services

Assessment of average life-cycle energy use and GHG
emissions for 20-30 key retall products

Estimation of lowest achievable life-cycle GHG emissions
by product

Scenario analysis of technical potential for GHG emissions
reductions via product life-cycle GHG emissions standards
and/or labels



Approach and Methods (I1)

1)  Development of a California-specific LCA model for
evaluation of goods and services
—  Production-phase energy use and GHG emissions:
e California EIO-LCA
In-state versus out-of-state emissions
California economic sector-specific data
e California consumer spending data
— Use-phase energy use and GHG emissions:
e California stock modeling
e Typical operating energy use data
e California-specific grid mix (base and peak loads)
—  Disposal-phase GHG emissions:
e California waste disposal and recycling data



California EIO-LCA Model

e Based on national EIO-LCA approach

e Includes Interstate and international

commerce

» Weber and Matthews 2007 study: U.S. produced 22% of eCO, In
2005, but U.S. consumption accounted for 25-26%.

e Energy and environmental data from CA
e Preliminary model developed in 2005

» Annual GHG emissions arising from CA consumption of:
— Semiconductors in personal computers
— Pharmaceuticals



Approach and Methods (I11)

2)

3)

Assessment of average life-cycle energy use and GHG
emissions for 20-30 key retall products

— Annual energy use and GHG emissions occurring both inside and
outside of California

—  Selection based on major emitters and ARB input

Estimation of lowest achievable life-cycle GHG emissions
by product
— Based on best available technologies and practices at each life-cycle
stage
e Production: sector-level improvement potential analyses (worldwide)
e Use: best-in-class energy efficiency (e.g., ENERGY STAR products)
e Disposal: optimal waste treatment strategies (e.g., recycling, composting)

—  “Low carbon” versions represent minimum life-cycle GHG emissions
achievable through California product standards and/or labels



California Industrial Energy Efficiency
Improvement Potential

Industrial Achievable Savings Potential by Industry, 2005
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Approach and Methods (1V)

4)  Scenario analysis of technical potential for GHG emissions
reductions via product standards and/or labels
—  Five year analysis period
—  Specific to 20-30 retail product analyzed

— Naturally occurring reductions based on product-specific analysis:
e Stock turnover
e Current energy efficiency and GHG reduction trends
— Remaining technical potential estimated for:
e “Low carbon” product standards (mandatory)
e “Low carbon” product labels (voluntary)
ENERGY STAR elasticity as proxy
e Green purchasing programs



I[Hlustrative Example: California PCs

Estimated California Installed Base of PCs, 2005

Desktop PCs

Market Total PCs w/ CRT w/ Flat Panel NOTDeCt:)sOk
Monitor Display

Residential 12,250,500 5,720,700 3,505,800 3,024,000

Commercial 6,718,600 3,189,000 1,862,100 1,667,500

Total 18,969,100 8,909,700 5,367,900 4,691,500

Source: Masanet, E., and A. Horvath (2006). “An Analysis of Measures for Reducing the Life-Cycle Energy Use and Greenhouse Gas Emissions of California’s Personal Computers.” Un'iversity of
California Energy Institute Technical Report, Berkeley, California.




Annual Life-Cycle GHG Emissions of
California’s Installed Base of PCs

Estimated Life-Cycle GHG Emissions, 2005

. 5
Life-Cycle GHG Emissions (10° Mg CO.e)
Phase Total
Inside CA Outside CA

Production 0.2 3.2 3.4
Use 1.9 1.9
End of Life -0.01 -0.13 -0.14
Total 2.1 3.1 5.2

» Total is equivalent to the annual GHG emissions of 1.16 million
automobiles (4,500 kg CO.e per car per year) or 1.3% of California’s net
GHG emissions in 2004

Source: Derived from (1) Masanet, E., L. Price, S. de la Rue du Can, R. Brown, and E. Worrell (2005). Optimization of Product Life Cycles to Reduce Greenhouse Gas Emissions in
California. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2005-110; and (2) Masanet, E., and A. Horvath (2006). An Analysis of Measures for
Reducing the Life-Cycle Energy Use and Greenhouse Gas Emissions of California’s Personal Computers. University of California Energy Institute Technical Report, Berkeley, California.



GHG Emission Reduction Potential

Analysis of Select Policy Measures, 2005

Life-Cycle Measure* Approximate Incremental Life-Cycle
Phase GHG Emission Reduction (%)**
_ Improve manufacturing energy efficiency 6%
Production — :
Reduce PFC emissions from semiconductor manufacture 3%
100% power management 8%
Use Purchase ENERGY STAR v3.0 compliant PCs 1%
Turn PC off during periods of non-use 2%
Upgrade to extend PC life by 50% 7%
End of Life — : :
Maximize recycling of PC control units 1%
Total 28%

* Measures are applied in a cascading fashion

** 0% reduction with respect to 2005 California PC life-cycle GHG emissions of 5.9*108 Mg CO,e

Source: Derived from (1) Masanet, E., L. Price, S. de la Rue du Can, R. Brown, and E. Worrell (2005). Optimization of Product Life Cycles to Reduce Greenhouse Gas Emissions in
California. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2005-110; and (2) Masanet, E., and A. Horvath (2006). An Analysis of Measures for
Reducing the Life-Cycle Energy Use and Greenhouse Gas Emissions of California’s Personal Computers. University of California Energy Institute Technical Report, Berkeley, California.



Translation to “Low Carbon PC” Standard/Label

* Minimization of production-phase energy use and GHG emissions
» Energy efficient supply chains (best practice, top quatrtile, etc.)
» Example: clean room HVAC efficiency can often be improved by 30% to 60%
* Reduced PFC emissions during semiconductor manufacture
» Reporting of embedded energy use and GHG emissions
* Minimum recycled content
* Designed for ease of upgrading

ENERGY STAR®

* Minimization of use-phase energy use and GHG emissions
* Best in class energy efficiency (e.g., ENERGY STAR certified)
« High efficiency power supplies, minimal standby losses
* Flat panel displays versus CRT monitors
» Power management enabled
* IEEE 1621 compliant (ease of power management standard)

* Minimization of disposal-phase energy use and GHG emissions
» Guaranteed take-back and recycling with full end of life fate reporting
* In-state recycling of materials
 Designed for recycling and ease of dismantling
» Reduction/elimination of toxic constituents (RoHS, EPEAT, and beyond)



Technical Potential for GHG Emissions Reduction

Projected Cumulative Life-Cycle GHG Emissions of
California PCs (2005-2012)

60

BIn state emissions Technical potential for GHG emissions
mOut of state emissions reductions:
O Total emissions

Total =11.3 108 Mg CO.e

40 In state = 8.2 105 Mg CO.e

30

T [ Out of state = 3.1 10° Mg CO,e
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Cumulative (2005-2012) GHG Emissions (106 Mg CO2e)

Baseline Scenario Low Carbon/Best Practice Scenario

Source: Masanet, E., and A. Horvath (2006). “An Analysis of Measures for Reducing the Life-Cycle Energy Use and Greenhouse Gas Emissions of California’s Personal Computers.” University of
California Energy Institute Technical Report, Berkeley, California.




Research Challenges

e Uncertainty

e Large number of consumer products
» Need to pick 20-30
» Significance and magnitude

e Dynamically changing supply chains
e Functional unit

e Design changes

e Updates over time
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